
An introduction to character encoding
issues in the mobile Web

1 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

AN INTRODUCTION TO CHARACTER ENCODING
ISSUES IN THE MOBILE WEB

Eduardo Casais
areppim AG
Bern, Switzerland

1. A LINGERING ISSUE

Character encoding – the binary representation of every symbol in documents
delivered to mobile terminals – is often treated as an afterthought in mobile Web
development. Many developers simply rely upon ISO-8859-1; not a bad choice, as
this encoding efficiently supports all important Western European languages, has
long been available in the mobile and fixed Internet, is widespread among low-end
phones, and is the default encoding in the HTTP standard. Astute software
engineers prefer UTF-8; this encoding supports Unicode, and hence the widest
range of languages and associated glyphs – great for multilingual “world”
applications. It is also a default for several application formats, most popular in the
WWW, and available in newer mobile terminals. Even in Japan, i-mode gateways
may take care of the complex mapping from UTF-8 to Shift_JIS-only capable
terminals.

Producing content in one of these two major encodings and configuring a WWW
server to advertise the content type and encoding properly generally suffices for
mainstream applications. There can be complications however – especially when
dealing with advanced functions or developing for exotic markets – and it is
preferable to be aware of them. The article examines the situation in the context of
mobile browsing.

2. THE DOCUMENT CHARACTER SET

Let us briefly recapitulate some concepts. A character set is a repertoire of abstract
symbols (e.g. lowercase a with acute accent, uppercase alpha). Each character is
mapped to a code point in a numeric space (resp. 0x00E1 and 0x0391 in the ISO-
10646 space, or 225 in ISO-8859-1 and 193 in ISO-8859-7). Characters may
correspond to several code points (as with Arabic letters, for which several forms
must be distinguished). Finally, each code point is represented as bits and bytes
depending on the character encoding scheme. Each of the 15 ISO-8859 code
spaces has just one single byte encoding. ISO-10646 has two possible encodings:
UCS-2 and UCS-4, using 2 and 4 bytes respectively. Unicode, whose code space is
equivalent to ISO-10646, has, among others: UTF-8 (1 to 4 bytes), UTF-32 (4 bytes,
with endian orderings), UTF-16 (2 or 4 bytes, with endian orderings), GB18030
(optimized for Chinese characters, 1, 2 or 4 bytes). Shift_JIS is a multi-byte character
encoding, with sequences to access both Japanese code spaces JIS-X-0201 and

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

2 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

JIS-X-0208. Many encoding schemes, including UTF-8, GB18030, all ISO-8859, and
to a large extent Shift_JIS, comprise US-ASCII as a compatible subset – the basis
for many protocols and formats in the Internet.

Web applications, as embodied in markup documents, operate within a specific
character set. In practice, one must take care of this in two situations:

 When using numeric character references (such as á for acute-
accented a, or \E1 in WCSS, or \u00E1 in Javascript). The numeric value
must then identify a legal code point of the document character set.

 When embedding non-standard characters, called pictograms, in the
document. These characters must correspond to available code points in a
part reserved for user-defined symbols of the document character set.

Since its origins, HTML specifies its document character set to be ISO-10646,
with some US-ASCII control characters left unused. The standard further defines a
number of special entities (& > < ") and character entities (such
as á and Α) that must be rendered by user-agents; this set
corresponds to ISO-8859-1 in HTML 3.2, and has been extended in version 4.0 of
the standard. The XML specification stipulates the document character set to be
ISO-10646 too, which therefore applies to relevant XML dialects (WML, XHTML
basic and XHTML mobile profile). XML just defines the same special character
entities as in HTML, with the supplementary '. The WAP standard provides
special-purpose markup to insert pictograms into pages written in WML and XHTML
mobile profile, so that in these cases one need not mess with non-standard symbols
in reserved code points. ISO-10646 is also the document character set of CSS and
WCSS; symbols can be designated by escape sequences of the form \NNNNNN
standing for their hexadecimal code point.

One must distinguish between the document character set and the document
encoding: it is possible to format an HTML or XML document with a non-Unicode,
non-ISO-10646 encoding scheme (say ISO-8859-6), as long as the characters which
fall outside the code space of the document encoding scheme (in this case,
accented and Greek letters) are represented via appropriate Unicode-compliant
numeric entities. The W3C standard does not define a default encoding for HTML
documents; the default encoding for XML documents is UTF-8 or UTF-16.

Local standards may depart markedly from the norms set by the WWW
Consortium. In particular, the major Japanese mobile operators (DoCoMo, Softbank,
KDDI and Willcom) have been developing and documenting their mobile Web
environments for a long time. There, the document character set is often conflated
with the document encoding, and pictograms (even equivalent ones) are placed at
different positions in private areas of the relevant code spaces.

In the case of i-mode, this means that numeric character references apply to
code points in the Shift_JIS space if the document is encoded with Shift_JIS, and in
the Unicode space if the document is encoded with UTF-8. Pictograms are
represented directly as Shift_JIS bytes, by decimal numeric references pointing in
the Shift_JIS reserved code space (0xF89F-0xF95E and 0xF9B1-0xF9FC), or by

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

3 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

hexadecimal numeric references pointing in the Unicode code space (0xE63E-
0xE6BA and 0xE70C-0xE757). In Europe, supported encodings are usually
Windows-1252 or ISO-8859-1, and pictograms are represented via decimal numeric
references in the ranges 0xE63E-0xE6A5 and 0xE6CE-0xE757 in the Unicode
space.

Willcom follows a scheme similar to i-mode, except that the code space reserved
for pictograms is different (0xF040 to 0xF14D in Shift_JIS).

KDDI deploys Openwave browsers; hence, pictograms are embedded in Web
pages via encoding-independent markup. With other applications (e.g. e-mail),
pictograms are inserted directly as special byte sequences. Shift_JIS is the preferred
document encoding.

Softbank phones support EUC-JP, ISO-2022-JP, Shift_JIS encodings; newer
devices (since the series “W” and “3G”) also support UTF-8, and their browsers
handle numeric character references. Pictograms are entered as special byte
sequences.

Clearly, a developer must first ascertain the exact document character set
manipulated in the target environment, how it differs from standards, its relation to
the document encoding, and the mapping of proprietary symbols. This applies to
further applications as well: Java, for instance, specifies the application character set
to be Unicode, provides a notation for numeric character entities, and lists the
encodings to be supported by a compliant terminal. However, many small-footprint
versions of the Java run-time have more limited capabilities – for instance many
Java-capable Motorola handsets only handle UCS-2 and ISO-8859-1 encodings.

3. THE DOCUMENT CHARACTER ENCODING

Since one can represent every symbol in a document character set by a numeric
entity, would it not be straightforward to encode every HTML, WML or XHTML page
entirely in US-ASCII, with all non-ASCII characters appearing as numeric
references? This approach is technically feasible, but exhibits several shortcomings:

 This kind of formatting reduces the legibility of documents. Furthermore,
editors and authoring tools might not have in-built support to manipulate
numeric references, forcing one to type á explicitly instead of simply
á. All the more so, since the notation for numeric references in style sheets
differs from the one in the enclosing markup document – it is \E1 for á, in
external style sheets, in those embedded in <style> elements or in-line
“style” attributes.

 Many older mobile phones do not support numeric character references at
all.

 The documents thus encoded are vastly bulkier, especially for languages
that do not use a Latin script: a single numeric reference requires at least 6
bytes to represent one non-ASCII character – mainstream encodings rarely
require more than 4. Not only does this reduce transmission performance in

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

4 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

wireless networks; it also makes the application run quicker against the
limits on page size imposed by end-user devices. Ultimately, it costs more
to the end-users.

Applying an efficient encoding interpretable by the end-user device is clearly a
better approach. The list of character encodings supported by a terminal are present,
as IANA-registered names, in its user agent profile and in the HTTP header field
“Accept-charset” it sends. Each source of information has its advantages and
shortcomings.

 The HTTP field associates quality values, ranging from 0.000 to 1.000, to
each character encoding; it is thus easier to order and select the most
suitable encoding satisfying the constraints of the application.

 In both the HTTP field and the user agent profile, the absence of an
encoding implicitly entails that it is not supported by the device. In HTTP,
the q-value 0.000 explicitly indicates that the corresponding encoding is not
admissible.

 Contrarily to the HTTP header, the user agent profile is not altered by
gateways or transcoding proxies standing between the terminal and the
server.

As an example, here are the contents of the HTTP field sent by a Samsung
SGH-X660:

iso-8859-1, us-ascii, utf-8;q=0.800, iso-10646-ucs-2;q=0.600,
iso-8859-2;q=0.500, windows-1250;q=0.500

Which are thoroughly transformed after going through a transcoder:

iso-8859-1, windows-1252;q=0.3, utf-8;q=0.2, *;q=0.1, iso-
8859-2

Whereas its user agent profile advertises the following:

<prf:CcppAccept-Charset>
 <rdf:Bag>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
</prf:CcppAccept-Charset>

Obviously, the preferred character encoding is best determined from an
unadulterated HTP header field – although one should ignore the indication “*”,
which is generally unsafe. There are circumstances where this is impossible though:

 Whenever the server initiates the communication, as in push applications.
Information about applicable encodings must then be extracted from the
user agent profile (possibly returned by a push gateway in answer to a
client capability query submitted by the application server), in particular
from characteristics “Push-Accept-Charset”, or even “CcppAccept-

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

5 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

Charset” and “MmsCcppAcceptCharSet”, if push-specific data is
incomplete.

 Whenever the terminal neither transmits the HTTP header field “Accept-
charset”, nor has an official user agent profile – such as happens with i-
mode phones and at least all phones from Softbank prior to the series “3G”.
In this situation, one must manage information about supported character
encodings in a server-based terminal capability database.

When inspecting the HTTP header, it is good to look in the alternative field “X-
device-accept-charset” first (in case a transcoder has modified the header), then
in “Accept-charset”, and eventually in “X-up-devcap-accept-charset” (for
devices accessing the Internet via an old-fashioned Openwave gateway) before
falling back on the user agent profile.

Whichever the source of information, the application should perform a
normalization to eliminate unwanted variations in encoding names like ucs2, UCS-2,
and iso-10646-ucs-2 – for instance by invoking functions analogous to
mb_preferred_mime_name() in PHP.

4. THE DOCUMENT FONTS

A browser might have all the necessary mechanisms in place to interpret and
manipulate Unicode characters, but representing them requires that suitable fonts
be installed. Browsers rely upon the operating system to render fonts; Thunderhawk
(a browser for Windows Mobile) used to be an exception – but its font pack was
restricted to symbols defined in ISO-8859-1.

Because of cost, memory and marketing constraints, manufacturers often
release the same phone model with a different set of pre-installed fonts in each
market. As a consequence, a device accepting universal encodings such as UTF-8
even with a quality of 1.000, may display content as strange blocks or some other
symbol, although retrieved pages are correctly encoded; the nifty German – Hindi –
Chinese multilingual on-line dictionary is unusable.

There is only one conclusive way to assess whether specific symbols (and
specific symbols of a specific font size) are properly represented on a specific
device: perusing the manufacturer documentation for the model variant at hand (i.e.
the one released in a specific market), and performing ad-hoc on-line tests. This also
applies to pictograms, as devices support more or less extant collections of these
icons (thus, i-mode has two levels of support for pictograms).

When accurate documentation is unavailable or on-line testing too cumbersome,
but knowledge about font availability is really important, one can resort to the
following heuristics:

 One may deduce which fonts are present from the list of non-universal
encodings in the user-agent profile or the HTTP header. A phone accepting
Shift_JIS or Big5 as encodings quite likely supports the fonts needed to
display text written in Japanese, respectively in traditional Chinese.

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

6 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

 The natural languages accepted by the user agent may give a hint as to
which fonts are pre-installed: if it is ready to receive documents in “zh-CN”,
then it ought to render text written in simplified Chinese. A related technique
is used in the Opera browser, which can estimate the character encoding
from the document language. The list of languages, identified as per
RFC3066, is sent in the HTTP header field “Accept-language” (or “X-up-
devcap-accept-language”), and also appears in the user agent profile as
“CcppAccept-Language”, “MmsCcppAcceptLanguage”, or “Push-Accept-
Language”.

One rarely goes to such lengths. Most of the time, end-users select the
applications and sites appropriate for them and their mobile phone. Only for
multilingual applications mixing different scripts on the same page might some form
of detection by the application server be in order – or at least an initial warning about
platform requirements to the user.

The application provider has to take the font capabilities of low-end or older
handsets as a given and adjust the service accordingly. In the case of smartphones
and PDA however (Symbian, Windows Mobile, PalmOS, iPhone, etc), the limitations
of pre-installed configurations are increasingly overcome by downloading and
installing additional commercial or freeware font packages and utilities, or even
performing a substitution with TrueType fonts converted from a PC (a popular
method to enhance Nokia N-series phones). Whether the device software fully
implements advanced typographical properties such as ligatures and bidirectional
display is a question that is settled by the terminal documentation and hands-on
testing.

Finally, let us remember that keypads or keyboards and user interfaces are
tailored for each region. A phone sold in Europe might be able to display Chinese
symbols, but input routines required to enter text in the Chinese script, as well as the
correct key labels, are provided natively only in the model variant customized for the
relevant markets.

5. THE DOCUMENT CHARACTER SET SPECIFICATION

Internet standards define the ways servers advertise the character encoding of a
document and the order of precedence of these various mechanisms. They apply to
the mobile Web as well.

1. Charset declaration inside the HTTP header.

 Applies to all document formats (HTML, WML, XHTML, CSS, WCSS).

The document is returned by the WWW server with a proper HTTP
header field indicating its type and character encoding, for instance:

Content-type: application/xhtml+xml;charset="iso-8859-7"

This method has the highest precedence. The construction of the HTTP
header is driven by the (implementation-dependent) configuration of the
WWW server. The server should be parameterized to return a charset

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

7 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

value only when the application fails to set it in the HTTP header;
otherwise, the server default might always prevail.

2. Charset declaration inside the document.

 XHTML basic, XHTML mobile profile, WML.

The document must start with an XML declaration specifying the
encoding:

<?xml version="1.0" encoding="iso-8859-7"?>

The “encoding” attribute may be left out only if the document is
encoded in UTF-8 or UTF-16. Only byte order marks may precede the
declaration; junk, such as empty lines or comments before the XML
declaration jeopardize the recognition of the encoding and must be
eliminated.

 HTML, XHTML basic, XHTML mobile profile, WML.

The document header repeats the HTTP header in a meta-tag:

<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=iso-8859-7" />
 …
 </head>
 …

The meta-tag must appear as closely as possible to the beginning of
the document, preferably before any comments and other markup.
The meta declaration has lower precedence than the XML declaration,
but the NetFront browser has been known to give it a higher priority
than even the HTTP header.

 CSS, WCSS.

The document starts with an encoding declaration:

@charset "iso-8859-7";

It appears at the top of the file, preceded only by a possible byte-order
mark.

Internal declarations are more than a fallback in case the HTTP header
gets mangled during transmission: they constitute the only portable method
to bind the character encoding to a document when it is accessed from the
phone cache or the phone local file store.

3. Charset declaration attached to a hyperlink.

 HTML, XHTML basic, XHTML mobile profile.

The URL explicitly states the character encoding of the destination
document:

<a href="http://appsrv.mobi/doc.htm"

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

http://appsrv.mobi/doc.htm

An introduction to character encoding
issues in the mobile Web

8 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

 charset="iso-8859-7"> …

 CSS, WCSS.

The link explicitly states the character encoding of the external style
sheet:

<link type="text/css" media="handheld"
 charset="iso-8859-7" rel="stylesheet"
 href="http://appsrv.mobi/thestyle.css" />

These features are unavailable in WML, and Japanese HTML and XHTML
variants.

4. Auto-detection of the encoding.

 All document types.

In the absence of any declaration, the browser may apply heuristics to
determine the character encoding of the document. The XML standard
specifies an approach to determine the encoding of XML documents,
but browsers may rely upon their own proprietary algorithms, for those
encodings they accept as input. Mobile developers must follow the
recommendations under point 2 above (avoidance of junk) to facilitate
the auto-detection of document encodings.

5. Fall back on a default character encoding.

 CSS, WCSS.

Style sheets embedded via <style> elements or “style” attributes
inherit the encoding of the enclosing document, as specified by the
CSS standard.

 All XML dialects.

As per RFC3023, in the absence of any other information, the default
encoding is as specified by the XML standard (UTF-8 or UTF-16, with
a proper byte order mark) – except when the document is presented
with a subtype of “text” (e.g. text/xml), in which case the default
encoding is US-ASCII.

 HTML, CSS, WCSS (all documents subtypes of “text”, except XML
formats).

When served through HTTP, and in the absence of any other
information, the default encoding specified by RFC2616 is ISO-8859-
1.

These norms are often violated in the mobile Web: Japanese terminals
almost always resort to Shift_JIS as a default for all documents. On
smartphones and PDA, some browsers can be configured by the end-user
to force a specific character set on input and output – overriding standard
defaults and auto-detection.

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

9 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

Conscientious mobile developers do not leave the decision as to which
encodings are actually used to the (potentially starkly divergent) defaults of various
components, and implement unambiguous and consistent declarations as explained
in points 1, 2 and 3.

6. INTERACTIONS BETWEEN APPLICATIONS

So far, we have analysed encoding issues in the context of requesting and then
delivering content to a mobile browser. Three aspects further complicate the matter:

 Replies, i.e. content deliveries from the terminal to the server.

 Interactions between the mobile Web applications and other user agents on
the terminal – such as e-mail, PIM, SMS, or MMS.

 The server environment – for instance scripting run-time, database, CMS.

Data flows back from the terminal to the server when the user fills in and submits
a form in a web page. In the case of an HTTP GET method, the proper character
encoding is first applied to field names and values, which are then further encoded
following the URI-escaping scheme of RFC1738 (apart from letters, numbers and a
few symbols, characters are represented in %NN notation, e.g. the tilde is %7E). The
outcome, a string formatted as application/x-www-formurlencoded, is appended to
the request URL, producing something such as this:

http://appsrv.mobi/doit?name=H%E9l%E8ne&msg=It+works%21

When user Hélène registers the message “It works!” to a hypothetical service
with the page configured for ISO-8859-1. With UTF-8, the result is:

http://appsrv.mobi/doit?name=H%C3%A9l%C3%A8ne&msg=It+works%21

POST is the method of choice to send large amounts of data or upload files.
Although one can use the same representation of request parameters as for GET
methods, the format multipart/form-data exhibits a definite advantage: explicit
information about character encoding accompanies the payload. Besides, because
binary transfers are possible, the request may be less heavy than URI-escaped
strings. Each component of a form is sent as a distinct part in the body of the
response, properly encoded according to RFC2388, and with a “Content-type” field
indicating the type and character encoding of the form field value. WWW and
application servers are configured to interpret this information and decode text
automatically; one must just make sure that the application ultimately receives data
in a character encoding that suits it.

The attribute “accept-charset”, bound to the <form> element (in HTML and
XHTML) or to the <go> task (in WML), instructs the browser to encode data
according to one of the listed character encodings. For instance

<form action="http://appsrv.mobi/doit" method="post"
 accept-charset="iso-8859-7 utf-8 utf-16"
 enctype="multipart/form-data">

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

10 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

indicates that the application server is ready to accept form data in any of the
three mentioned character encodings. If the attribute is absent or unrecognized, the
user agent falls back on the encoding used for the Web page itself, or possibly on a
browser-specific default – not an infrequent occurrence since this useful attribute is
far from being universally supported:

Content Form attribute “accept-charset” defined

Markup format No Yes

HTML 3.2 4.0, 5.0

XHTML basic 1.0 1.1

XHTML mobile profile 1.0, 1.1 1.2

WML 2.0 (<form>) 1.1, 1.2, 1.3, 2.0 (<go>)

The special versions of HTML and XHTML designed by Japanese operators
seldom implement “accept-charset” in forms, since content is supposed to be in
Shift_JIS anyway.

The fact that a browser decodes input in a certain range of encodings does not
imply that it can produce output in the same range of encodings. In fact, the latter set
is usually significantly smaller than the former one. The values in the “accept-
charset” form attribute and the encoding of the Web page itself must take this
further constraint into account. Prime candidate encodings derived from the HTTP
header (preferably those with a q-value of 1), the user agent profile and
manufacturer’s technical manuals are usually universal encodings such as UTF-8
and UCS-2, and dominant local schemes (ISO-8859-1, Shift_JIS, etc).

Interactions with other user agents – for instance via mmsto: and mailto: URI
schemes – raise similar difficulties: MMS readers and e-mail clients have their own
restrictions regarding the allowable input and output character encodings – and
these might not be exactly the same as for the browser. The situation gets thornier
when accessing the wireless telephony application interface: which characters can
be stored in the phonebook? Which symbols can be included in an SMS?
Unfortunately, these functions, except for MMS, are not subject to a normalized
description in the user agent profile, and may not be explained in enough detail in
the readily available developers’ documentation. Looking at non-Internet norms
helps: if the smsto: URI scheme seems to behave haphazardly, a check whether it is
not actually implementing the default 7-bit encoded alphabet of GSM 03.38 is in
order…

Internationalization in service platforms is an issue whose comprehensive
exposition is beyond the scope of a short paper. In short, tools that are not natively
designed around Unicode hinder the development of internationalized applications.
We pinpoint three essential facets:

1. The character set used internally. Modern software systems rely upon
Unicode (frequently encoded as UCS-2 or UTF-16), and are thus able to
process, compare and sort strings with few restrictions. Other environments

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

11 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

carry a legacy of having been originally built for one-byte character sets (i.e.
US-ASCII, ISO-8859-1); multi-byte string manipulation routines may exist,
but often do not implement all required functions, exhibit inconsistent
capabilities with respect to character encodings, or lack internationalization
support for crucial services entirely (e.g. sorting). PHP, for instance, is still
affected by these shortcomings.

2. The encodings used for information stored persistently. It may be possible
to encode and save data (respectively, decode and read it in) in a number
of character encodings. Thus, MySQL allows database administrators to
specify the character encoding of text attributes at the level of databases,
tables, and individual columns, augmented with a language-specific
collating sequence (i.e. the sorting order stating that “ä” is sorted as “ae”
in German, but comes after “z” and “å” in Finnish). The DBMS sorts data
according to the collating sequence when a query is executed. Conversely,
prudent programmers keep their PHP source code in ASCII – or at least in
a single-byte encoding format.

3. The encoding parameters when communicating with client applications.
Generally, it is possible to set up the encoding for outbound data, and the
encoding which is assumed for inbound data (e.g. via SET CHARACTER
SET in MySQL; via functions mb_http_input, mb_output_handler,
and mbstring run-time configuration variables in PHP). Sometimes, as in
PHP, an auto-detection scheme is relied upon when several possible input
encodings are expected. Data is automatically converted from the internal
character set to the output encoding, and from the input encoding to the
internal character set.

Overall, the goal is to ensure compatibility between the character encodings
accepted and produced by different units in the service delivery chain. For
performance reasons, the selected encodings should actually be the internal
character set of the various components.

7. CONCLUDING REMARKS

Ultimately, the most severe constraints regarding character encoding are imposed by
market requirements: languages spoken in a country, scripts used to write,
capabilities of phones released to customers, format of source material incorporated
in Web sites, etc. From this perspective, mobile developers can rarely avoid dealing
with well-established regional character sets such as Big5, GB2312, GB18030,
KOI8-R, TIS-620, Shift_JIS, or ISO-2022-JP entirely. For generic or multilingual
applications, the observations in the introduction apply: ISO-8859-1 is an efficient
encoding for Western languages – which, because of the dissemination of the
English, French, Portuguese and Spanish languages, is applicable in a large number
of countries all around the world – while UTF-8 is well-suited to international
services. Whenever possible, one should actually prefer ISO-8859-1 over UTF-8:
ISO-8859-1 is a single-byte encoding whose 256 code points all map directly into the
first 256 code points of Unicode – thus no decoding is necessary in practice,

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

12 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

contrarily to UTF-8, which is a variable multi-byte scheme. Furthermore, UTF-8
requires two bytes rather than one to represent ISO-8859-1-specific symbols –
hence ISO-8859-1 holds an advantage regarding transmission over the air too. The
table in the appendix, derived from 4295 user agent profiles, shows the relative
importance of universal and regional character sets supported by mobile browsers.
These statistics are an approximation, since they evidently underestimate the
properties of those models that do not publish any user agent profile: many WAP 1
handsets, low-end phones, and a large range of Japanese terminals.

Internet standards (www.ietf.org, www.w3.org) address in detail many questions
regarding internationalization, but, as already mentioned, are not undisputedly
authoritative because of the prevalence of market-specific solutions, foremost in
such Asian countries as Japan and Korea. There, the developers’ documentation
published by operators constitutes the reference. The W3C site provides a wealth of
tutorials, hands-on FAQ, and reference documents about internationalization
(www.w3.org/International). Other sites that delve in depth into the concepts and
practical difficulties with character sets can be found at www.alanwood.net/unicode
and www.cs.tut.fi/~jkorpela/chars/index.html. The various national and international
norms (especially www.unicode.org) remain indispensable for those developers who
must implement complex encoding, decoding and typesetting utilities.

8. APPENDIX: FREQUENCY OF SUPPORTED CHARSETS

Charsets are sorted according to decreasing frequencies of appearance in user
agent profiles, and arranged in regional groups. Those charsets mentioned in less
than 0.82% of the profiles are summed up under the category “other”; we observe
the presence of a long tail of special encodings for various Asian languages (Tamil
and Vietnamese, besides further charsets for Chinese, Japanese, Korean and Thai).
A few profiles, marked “none” do not declare any supported charset. ASCII is
classified as the lowest common denominator amongst encodings.

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

http://www.unicode.org/
http://www.cs.tut.fi/~jkorpela/chars/index.html
http://www.alanwood.net/unicode
http://www.w3.org/International
http://www.w3.org/
http://www.ietf.org/

An introduction to character encoding
issues in the mobile Web

13 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

Charset World Europe Europe Far East Near East

universal misc. West Centre North Cyrillic Greek Ch. Jap. Kor. Thai etc Turk. Hebr. Arabic

utf-8 95.9 %

us-ascii 87.0 %

iso-8859-1 84.9 %

ucs-2 65.4 %

utf-16 26.8 %

koi8-r 10.4 %

iso-8859-2 9.0 %

iso-8859-7 8.9 %

iso-8859-5 8.3 %

big5 8.2 %

iso-8859-9 8.2 %

iso-8859-4 7.9 %

windows-1252 7.5 %

windows-1250 7.0 %

shift_jis 6.7 %

windows-1253 6.6 %

windows-1254 6.6 %

euc-jp 5.6 %

iso-2022-cn 5.3 %

iso-2022-jp 5.3 %

gb2312 5.2 %

iso-8859-3 5.2 %

iso-8859-6 4.9 %

iso-8859-8 4.9 %

iso-8859-10 4.3 %

iso-8859-15 3.9 %

iso-8859-8-i 3.8 %

windows-1257 3.7 %

windows-1256 3.7 %

windows-1251 3.7 %

windows-1255 3.7 %

cp936 3.6 %

euc-kr 3.5 %

gb18030 3.4 %

ks-c-5601 3.3 %

utf-7 3.3 %

tis-620 3.3 %

ucs-4 3.2 %

iso-8859-13 1.2 %

iso-8859-14 1.2 %

other 0.4 % 0.7 % 0.6 % 2.8 % 0.3 %

none 1.7 %

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

An introduction to character encoding
issues in the mobile Web

14 (14)

Eduardo CASAIS TECHNICAL PAPER 2008-12-08

REFERENCE

Eduardo Casais: An introduction to character encoding issues in the mobile Web,
technical paper, areppim AG, Bern, Switzerland, 2008-12-08, 14 pages.

This paper has been published on mobiForge.com at

http://mobiforge.com/developing/story/character-encoding-issues-and-mobile-web

and can be downloaded in PDF format from areppim.com at

http://www.areppim.com/archives/print_charsetv220100608.pdf

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland. All rights reserved.

ABOUT THE AUTHOR

Eduardo Casais has been working on mobile Web technologies since 1997. He led
the development of the protocol stack and of transcoding and content adaptation
facilities in the Nokia WAP Server. As co-founder of areppim AG, he is now
developing services to access, analyse and display quantitative information
graphically on mobile phones.

ABOUT AREPPIM AG

areppim AG develops Internet applications, with an emphasis on the display of
quantitative information. The site http://www.areppim.com publishes data on a wide
range of topics, presented as intuitive, content-rich charts and often accompanied by
concise analyses. Naturally, data can also be accessed with mobile phones at
http://mobile.areppim.com through a no-frills, mobile-optimized interface.

ADDRESS

areppim AG
Wankdorffeldstrasse 102
P.O. Box 261
CH-3000 Bern 22
Switzerland

e-mail: info@areppim.com

© 2008 Eduardo Casais, areppim AG, Bern, Switzerland

mailto:info@areppim.com
http://mobile.areppim.com/
http://www.areppim.com/
http://www.areppim.com/archives/print_charsetv220100608.pdf
http://mobiforge.com/developing/story/character-encoding-issues-and-mobile-web

	1. A Lingering Issue
	2. the document character set
	3. the document character encoding
	4. the Document Fonts
	5. the Document character set specification
	6. Interactions between Applications
	7. Concluding Remarks
	8. Appendix: frequency of supported charsets
	reference
	about the author
	About areppim AG
	Address

