
Developing custom pictograms for the
mobile Web

1 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

DEVELOPING CUSTOM PICTOGRAMS FOR THE
MOBILE WEB

Eduardo Casais
areppim AG
Bern, Switzerland

1. A MATTER OF TRADE-OFFS

Pictograms – miniature graphical representations of states, actions and objects –
made their way into the mobile Web over 15 years ago. Several normalized
(UNICODE, WAP) and proprietary (Japanese emojis, Openwave) mechanisms are in
place to enrich Web applications with pre-defined images.

The various approaches, with correspondence tables between icon dictionaries,
are reviewed in the article at http://areppim.com/b2evolution/usrblogs/technotes/?
p=37. However, one cannot always rely upon these standards:

 Numerous devices do not support any standard pictographic facilities at all.

 Many others do not implement all symbols of the reference sets; fall-backs
are therefore needed to cope with missing elements.

 A service may require images outside normalized dictionaries (see
http://areppim.com/b2evolution/usrblogs/technotes/?p=38), like the sign for
RSS feeds or the indication of a hidden navigation menu .

 Finally, an organization may wish to enforce its own look-and-feel across
platforms, since the typical appearance of default icons can be disparate:

Symbol DoCoMo iOS Openwave UNICODE

upper left

password

message

pull face

Programming techniques for the ad-hoc implementation of pictograms entail
different compromises regarding the properties expected from the resulting icon
resources – apart from their graphical quality:

 They can be inserted in HTML and CSS markup and manipulated like
normal textual data (alignment, scale, colour, effects).

 Once installed, they are persistent: they survive the end of a browsing
session and the attendant flushing of the client cache.

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://areppim.com/b2evolution/usrblogs/technotes/?p=38
http://areppim.com/b2evolution/usrblogs/technotes/?p=37
http://areppim.com/b2evolution/usrblogs/technotes/?p=37

Developing custom pictograms for the
mobile Web

2 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

 They are accessible to all mobile Web applications running on the terminal:
different Web pages need not load and store their own version of the icons
– just as each municipality need not define its own variant of traffic signs.

In the following, we describe common methods and discuss their applicability.
While the topic is treated in a resolutely mobile perspective, all techniques carry over
directly to desktop Web development.

2. SYSTEM FONTS

The only approach that fulfils all the aforementioned requirements consists of
installing an adequate typeface implementing UNICODE pictographs on the terminal,
and then configuring the client software to use it as the default font. The requisite
manipulations imply transferring a font package (the TrueType format is practically
always supported) directly to the end-user device; what is usually straightforward with
linux or Windows can become quite involved on a mobile operating system:

OS Manual procedure summary

Android Overwrite system fonts in folder /system/fonts.

Requires a device management tool (ADB from the Android SDK).
Requires (possibly transient) root privileges.
http://yespiracy.com/forums/android/how-to-install-unicode-fonts-in-
android-(using-adb)

Bada Custom fonts can be added, but the system typeface itself appears to be
non-replaceable.
Requires a device management tool (Kies and sTune).
http://badahub.com/2011/11/method-to-add-new-font-in-bada-2-0.html

Blackberry 7.x Copy new fonts with a .font extension to folder /Device
Memory/appdata/rim/fonts or /store/appdata/rim/fonts. Then
change default font via the “Options – Screen and Keyboard” menu.
http://www.berryreview.com/2012/01/30/how-to-add-fonts-to-your-
blackberry-smartphone-without-an-app

iOS Overwrite system fonts in folder /System/Library/Fonts/Cache.
Application-specific fonts that do not replace default typefaces are made
known to iOS by editing a configuration file.
Requires root privileges (jailbreaking).
http://blog.gauravgiri.com/2008/08/tutorial-adding-extra-fonts-to-iphone

Meego Overwrite system fonts in folder /usr/share/fonts/nokia/Nokia
Pure/proportional.

Requires root privileges.
http://nokiamobileblog.com/how-to-change-the-font-of-your-nokia-n9

Nokia S40 Reflash the device with a modified firmware substituting system fonts.
http://www.youtube.com/watch?v=OGGeN86MzUw

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://www.youtube.com/watch?v=OGGeN86MzUw
http://nokiamobileblog.com/how-to-change-the-font-of-your-nokia-n9
http://blog.gauravgiri.com/2008/08/tutorial-adding-extra-fonts-to-iphone
http://www.berryreview.com/2012/01/30/how-to-add-fonts-to-your-blackberry-smartphone-without-an-app
http://www.berryreview.com/2012/01/30/how-to-add-fonts-to-your-blackberry-smartphone-without-an-app
http://badahub.com/2011/11/method-to-add-new-font-in-bada-2-0.html
http://yespiracy.com/forums/android/how-to-install-unicode-fonts-in-android-(using-adb
http://yespiracy.com/forums/android/how-to-install-unicode-fonts-in-android-(using-adb

Developing custom pictograms for the
mobile Web

3 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

Symbian Copy new fonts to folder /Resource/Fonts on the memory card, and
rename them to match existing system fonts (which themselves should not
be disturbed from the device built-in system memory).
Old versions of S60 only accept fonts in the format GDR; translation from
TTF is achieved through the tool KVT Symbian Font Converter.
http://mynokiablog.com/2010/11/23/how-to-changing-fonts-in-symbian3-
very-easy-done-in-a-minute-nokia-n8-c6-01-c7-e7
http://symbianworld.org/478-how-to-change-fonts-in-s60-3rd

WebOS Add new fonts to folder /usr/share/fonts. Custom fonts overriding the
default typeface must have a matching name.
Requires a device management tool (WebOSQuickInstall).
Requires root privileges (development mode).
http://www.webosbuzz.com/hp-touchpad/1784-%5Btutorial%5D-unicode-
fonts-touchpad-vietnamese-language.html

Windows Application-specific fonts can be added to Windows Phone 7.x, but the
system typeface itself is non-replaceable. On Windows Mobile 6.x, copy
new fonts to folder Windows/Fonts before editing the registry.

http://answers.microsoft.com/en-us/winphone/forum/wp7-wptips/add-fonts-
to-windows-phone-7/b0e016fe-1f10-4be4-9e5e-fea8a12fbd80
http://forum.xda-developers.com/showthread.php?t=334781

Should the custom font be associated to a different writing logic (such as
happens with many Asian languages), then keyboard layouts and rendering functions
must be adjusted too, possibly affecting system libraries. A misconfiguration may well
result in an unstable operating system, so all resources being altered should be
backed up beforehand.

Because of its intricacies, specialized utilities have been published to facilitate
font installation on popular devices (such as BytaFont for jailbroken iPhones).
Nonetheless, the overall approach is only reasonably feasible in a controlled
environment where handsets are configured centrally before being distributed to end-
users – such as in a corporation or a public administration.

3. WEB FONTS

CSS includes a construct for downloading an external font to a user agent:

@font-face {
 font-family: 'IconicFill';
 src: url('http://site.ch/fonts/iconic_fill.eot');
 src: url('http://site.ch/fonts/iconic_fill.eot?#iefix')
 format('embedded-opentype'),
 url('http://site.ch/fonts/iconic_fill.woff')
 format('woff'),
 url('http://site.ch/fonts/iconic_fill.ttf')
 format('truetype'),
 url('http://site.ch/fonts/iconic_fill.svg#iconicfill')
 format('svg');

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://site.ch/fonts/iconic_fill.svg#iconicfill
http://site.ch/fonts/iconic_fill.svg#iconicfill
http://site.ch/fonts/iconic_fill.svg#iconicfill
http://site.ch/fonts/iconic_fill.ttf
http://site.ch/fonts/iconic_fill.ttf
http://site.ch/fonts/iconic_fill.ttf
http://site.ch/fonts/pictograms.woff
http://site.ch/fonts/iconic_fill
http://site.ch/fonts/iconic_fill
http://site.ch/fonts/pictograms.eot?#iefix
http://site.ch/modernpics-webfont.eot
http://site.ch/modernpics-webfont.eot
http://site.ch/modernpics-webfont.eot
http://forum.xda-developers.com/showthread.php?t=334781
http://answers.microsoft.com/en-us/winphone/forum/wp7-wptips/add-fonts-to-windows-phone-7/b0e016fe-1f10-4be4-9e5e-fea8a12fbd80
http://answers.microsoft.com/en-us/winphone/forum/wp7-wptips/add-fonts-to-windows-phone-7/b0e016fe-1f10-4be4-9e5e-fea8a12fbd80
http://www.webosbuzz.com/hp-touchpad/1784-%5Btutorial%5D-unicode-fonts-touchpad-vietnamese-language.html
http://www.webosbuzz.com/hp-touchpad/1784-%5Btutorial%5D-unicode-fonts-touchpad-vietnamese-language.html
http://symbianworld.org/478-how-to-change-fonts-in-s60-3rd/
http://mynokiablog.com/2010/11/23/how-to-changing-fonts-in-symbian3-very-easy-done-in-a-minute-nokia-n8-c6-01-c7-e7
http://mynokiablog.com/2010/11/23/how-to-changing-fonts-in-symbian3-very-easy-done-in-a-minute-nokia-n8-c6-01-c7-e7

Developing custom pictograms for the
mobile Web

4 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

 font-weight: normal;
 font-style: normal
}

This clause instructs the browser to retrieve font Iconic Fill from the link matching
a suitable format. Following the so-called “bulletproof syntax”, it includes a redundant
declaration for files of type EOT and a URL pseudo-parameter to cater for limitations
of Microsoft Internet Explorer; the identifier appended to the SVG declaration is
indispensable. The font appears in a further CSS declaration:

.picto {
 font-family: 'IconicFill'
}

In the markup, one inserts the desired symbol with a numeric reference – or a
letter or digit, if the font covers usual alphanumeric code points – and encloses it
within an element of class picto:

<!-- phone call -->

Sometimes, HTML elements are systematically endowed with a pictographic
marker, for instance when distinguishing different URL types. The following notation
is then preferred – it eliminates clutter from the HTML markup, and enforces
consistency by concentrating presentation characteristics in one CSS clause:

a[href^=”tel:”]:before {
 /* Mobile phone symbol prepended to click-to-call links. */
 font-family: 'IconicFill';
 content: ”\E06E ”
}
input[type=”file”]:after {
 /* Document symbol appended to file upload fields. */
 font-family: 'IconicFill';
 content: ”\00E000”
}

press centre
Share file: <input type=”file” name=”upfile” />

HTML-5 capable devices may tailor individual elements through data attributes:

[data-picto]:before {
 font-family: 'IconicFill';
 content: attr(data-picto)
}

<h3 data-picto=””>Detailed description</h3>
<!-- Magnifying glass symbol prepended to a section title. -->

Like other external resources, Web fonts may be evicted from the browser cache
whenever the client software deems it appropriate, and utilization is restricted to the
site that loaded them initially. Furthermore, mobile platforms impose restrictions on
installable font packages (on Blackberry, for instance, they cannot exceed 90 kB). On
the other hand, they exhibit two distinct advantages over custom system fonts:

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

Developing custom pictograms for the
mobile Web

5 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

 Since a Web font is always explicitly downloaded, all necessary symbols
can be rendered even if the end-user re-configures the terminal with an
unexpected default typeface that does not comprise the required glyphs.

 Since a Web font serves to style textual elements explicitly, it can be
designed so that its symbols are judiciously placed in the UNICODE space
– for instance within the Basic Latin block. This is valuable whenever the
client does not recognize code points outside the Basic Multilingual Plane.

Practical Web services for converting a font definition into several formats, with
the associated CSS font-face declaration, can be found at http://www.font2web.com,
http://fontface.codeandmore.com/index.php and http://www.fontsquirrel.com. Another
free online font converter is http://www.freefontconverter.com.

4. IMAGES STORED LOCALLY

The Web Local Storage mechanism of HTML-5 serves to manage key-value pairs
kept persistently on the terminal. This makes it possible to avoid downloading
graphical resources anew at every browsing session, as happens with Web fonts.
The approach can be applied effectively to resources other than pictograms – such
as static pictures that appear repeatedly in a Web site. It consists of storing images
as BASE64-encoded strings locally, and, subsequently, retrieving them to fill in
placeholders for pictograms in the HTML pages before these are rendered.

The landing pages of the mobile Web site include a Javascript function, activated
by the window.onload event, that initializes the persistent store with all pictograms.
We assume the existence of an ancillary routine hasLocalStorage that
determines whether the browser supports the required capability.

function initPictoStorage () {
 if (hasLocalStorage ()) {
 // Check if the current version of the pictogram set is
 // already present to avoid useless re-installations.
 var curVersion = '…';
 if (curVersion != window.localStorage.getItem
 ('pictocurversion')) {
 // Retrieve pictogram set via AJAX/JSON. One could
 // instead declare it statically as an array here.
 var pictoHTTP = new XMLHttpRequest ();
 pictoHTTP.onreadystatechange = function () {
 if (this.readyState == 4) {
 if (this.status == 200) {
 // Store each pictogram locally with
 // a key prefixed by ”picto”. Add or
 // update the version as a last step.
 // Give up immediately upon a problem.
 // Instead of JSON.parse, a Javascript
 // eval() call can be used.
 var pictograms = JSON.parse
 (this.responseText);

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://www.freefontconverter.com/
http://www.fontsquirrel.com/fontface/generator
http://fontface.codeandmore.com/index.php
http://www.font2web.com/

Developing custom pictograms for the
mobile Web

6 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

 pictograms.push ({"pid" : "curversion",
 "pval" : curVersion});
 for (var i = 0;
 i < pictograms.length; i++) {
 try {
 window.localStorage.setItem
 ('picto' + pictograms[i].pid,
 pictograms[i].pval);
 } catch (e) { break; }
 }
 }
 // Whatever happens, initialize images.
 SetAllPicto ();
 }
 }
 // Select image package to download depending
 // on the pixel density of the display
 var pictoFile;
 if (window.devicePixelRatio !== undefined) {
 pictoFile = (window.devicePixelRatio >= 1.5
 ? 'hdpictograms.json'
 : 'pictograms.json');
 } else {
 pictoFile = 'pictograms.json';
 }
 pictoHTTP.open ('GET',
 'http://site.ch/' + pictoFile,
 true);
 pictoHTTP.send ();
 }
 } else {
 // No local storage, so initialize to fall-back images.
 setAllPicto ();
 }
}

Images are declared in a JSON file with a property list binding pictogram names
(“pid”) to their BASE64-coded bitmap (“pval”):

[{ ”pid” : ”phone”, ”pval” : ”iVBORw0K … RK5CYII=” },
 { ”pid” : ”photo”, ”pval” : ”iVBORw0K … TkSuQmCC” }, …]

Each pictogram is defined in the (X)HTML markup as an image, styled with a
specific class picto and explicitly typed via a data-picto attribute, but with src left
empty. For instance, one may attach a telephone icon to a click-to-call link as follows:

<img class=”picto” alt=”call”
src=”” data-picto=”phone” />press centre

Every page featuring pictograms defines a function that, when window.onload
fires, walks through every img element, checks whether it belongs to class picto, and

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://site.ch/

Developing custom pictograms for the
mobile Web

7 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

if so, fetches the appropriate BASE64 string and assigns it to the src attribute. If
data cannot be found in the local store, a URL to an external bitmap is used instead.

function setAllPicto () {
 // Retrieve all images in the HTML page and set the src of
 // those identified as pictograms with a proper value.
 var localStorageOn = hasLocalStorage ();
 var allImages = document.getElementsByTagName ("img");
 for (var i = 0; i < allImages.length; i++) {
 var isPicto = allImages[i].className.match (/picto/);
 if (isPicto != null) {
 // Retrieve the right BASE64 string stored locally.
 var localPicto = null;
 var pictoName = allImages[i].getAttribute
 ("data-picto");
 if (localStorageOn) {
 localPicto = window.localStorage.getItem
 ('picto' + pictoName);
 }
 if (localPicto != null) {
 // Initialize img element with BASE64 string.
 allImages[i].setAttribute ("src",
 'data:image/png;base64,' +
 localPicto);
 } else {
 // The pictogram is not found locally, so fall
 // back is a normal URL to an external bitmap.
 allImages[i].setAttribute ("src",
 'http://site.ch/pictograms/' +
 pictoName + '.png');
 }
 }
 }
}

Finally, a CSS declaration for class picto ensures that pictograms are scaled to
match the dimension of the surrounding text, with possible spacing adjustments:

img.picto {
 margin-left: 2px;
 margin-right: 2px;
 border-style: none;
 outline-style: none;
 /* Size and alignment chosen to resemble characters. */
 height: 0.75em;
 width: 0.75em;
 vertical-align: baseline
}

Images cannot be embedded as seamlessly as text, but they entail one major
benefit over font-based pictograms: the flexibility to design rich polychrome symbols.
Sharing of pictograms put in local storage is of course limited to pages from the

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://mysite.ch/pictograms/
data:image/png;base64

Developing custom pictograms for the
mobile Web

8 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

same host and domain, but a bigger drawback is that the technique is rendered
inoperative whenever Javascript is switched off in the browser.

5. BACKGROUND CSS IMAGES

Absent the local Web storage facility, one can still rely upon BASE64 encoded
images to deliver pictograms to terminals. Placing them inside a style sheet is
preferable, since the CSS file can be cached and shared among several pages,
whereas the direct inclusion of static strings in HTML results in code duplication and
ultimately larger payloads to be transmitted over the air.

One CSS class is reserved for each pictogram, and the corresponding bitmap
drawn as background of the empty textual space allocated for this purpose:

[class|=”picto”]:before {
 /* Reserve exactly one em white space for each pictogram.
 Set position and scale in individual rules. */
 content: ”\002003”
}
.picto-phone:before {
 /* Prepend the symbol of a telephone. */
 background: url(' … K5CYII=')
 no-repeat center center;
 background-size: 0.75em /* Fits nicely as a character */
}
.picto-photo:before {
 /* Prepend the symbol of a photographic camera. */
 background: url(' … kSuQmCC')
 no-repeat 50% 50%;
 background-size: 0.75em
}

High-density displays are taken into account by setting up separate versions of
the style sheet for each pixel ratio of interest, and then instructing client software to
download the relevant one through appropriate CSS media queries – possibly
complemented by conditional statements to cater for Internet Explorer. In (X)HTML:

<!-- Default CSS rules for devices with normal pixel ratio. -->
<link rel=”stylesheet” type=”text/css” href=”sitestyles.css” />
<!-- CSS rules for high-density screens, full media query. -->
<link rel=”stylesheet” type=”text/css” href=”hdsitestyles.css”
media=”only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min--moz-device-pixel-ratio: 1.5),
 only screen and (-o-min-device-pixel-ratio: 3/2),
 only screen and (min-device-pixel-ratio: 1.5),
 only screen and (min-resolution: 144dpi),
 only screen and (min-resolution: 1.5dppx)” />

One inserts pictograms in the markup by stating the relevant CSS class name:

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

data:image/png;base64
data:image/png;base64

Developing custom pictograms for the
mobile Web

9 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

Photography is allowed.

press centre.

Developers will have no difficulty finding an abundance of on-line services
converting data files to BASE64 strings – like http://yellowgreen.de/image-to-base64-
string-encoder or http://www.motobit.com/util/base64-decoder-encoder.asp – as well
as a few standalone programs (notably datauri, https://github.com/nzakas/datauri).
More advanced utilities parse entire CSS style sheets, extract URL to external
media, and replace them with embedded BASE64 data; a couple of examples are
spritebaker (on-line Internet service, http://www.spritebaker.com) and cssembed
(standalone command line tool, https://github.com/nzakas/cssembed).

6. SPRITES

The possibly oldest materialization of Web sprites may not be as well-known as CSS
background image sprites, but it optimizes graphical resources to a comparable
degree. It is especially well-suited for elements that are all identical in size – a
constraint unlikely to prove troublesome in the case of pictograms.

Assuming the sprite is composed of eleven images N pixels wide by N pixels tall,
arranged consecutively without separation in one column, one sets up a kind of
viewport matching the dimensions of a single character through which the relevant
portion of the sprite is rendered:

.pictowrap {
 position: relative; /* To shift the underlying image. */
 width: 1em; /* Set container dimensions the */
 height: 1em; /* … same as surrounding text. */
 overflow: hidden; /* Only one sub-image is shown. */
 display: inline-block /* Image is embedded within text. */
}
[class|=”picto”] {
 position: absolute; /* To be able to shift the image */
 left: 0; /* … flush to left of container. */
 width: 1em; /* Scale image to fill container */
 height: 11em; /* … and keep height proportional.*/
 outline-style: none;
 border-style: none
}
.picto-doc {
 top: -2em /* third image inside sprite */
}
.picto-phone {
 top: -8em /* ninth image inside sprite */
}

The second rule relying upon an attribute selector can of course be folded into
the directives for individual pictograms. Although in principle equivalent, a horizontal
sprite is not recommended, as many a mobile browser chokes on images that do not

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

https://github.com/nzakas/cssembed
http://www.spritebaker.com/
https://github.com/nzakas/datauri
http://www.motobit.com/util/base64-decoder-encoder.asp
http://yellowgreen.de/image-to-base64-string-encoder
http://yellowgreen.de/image-to-base64-string-encoder

Developing custom pictograms for the
mobile Web

10 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

fit naturally within the screen width. The final (X)HTML code includes a semantically
meaningful alt attribute attached to the pictogram and looks like this:

<h3><img class="picto-doc" alt=”file”
src="http://site.ch/sprites.png" />Appendix</h3>

If one can afford the software brittleness induced by pixel-oriented declarations,
then CSS background sprites may play a role – particularly when optimizing purely
decorative assets such as graphical separators, repeating background textures, or
when tailoring bullets in unordered lists with icons. Interestingly, these customization
capabilities are also supported by old-fashioned built-in pictograms of the Openwave
browser.

There are numerous on-line sprite generators, configurable interactively
(alignment and padding of icons, colour table, image output format, etc). The site
http://www.designdim.com/2011/02/8-best-css-sprites-generator-resources lists a
selection of such utilities. SmartSprites (http://csssprites.org) is a more elaborate tool
to produce CSS sprites and manage the accompanying style sheets. A tutorial on
sprites can be found at http://coding.smashingmagazine.com/2009/04/27/the-
mystery-of-css-sprites-techniques-tools-and-tutorials.

7. MINIMAL FALL-BACK

If the methods proposed so far turn out to be inapplicable – as it frequently occurs
with low-end phones, older WAP handsets and PDAs running legacy software – the
only recourse left is the default already presented in section 5: pictograms
implemented as external images. Assuming style rules for class picto identical to
those listed in the aforementioned section, one obtains a simple markup:

<img class=”picto” alt=”call”
src=”http://site.ch/pictograms/phone.gif” />press centre

Unsurprisingly, this technique entails practically none of the performance benefits
associated with built-in pictograms.

The matrix below assesses the compatibility of major mobile browsers against
every solution described in the present article. The software versions under
consideration encompass a broad range of device classes and generations. The
table reveals that, while the SVG format is recommended for icons and pictograms
because of the well-behaved properties of vector images under transformations,
developers must be ready for a (still) relatively inconsistent support for this standard
across browsers, and be wary of using full-fledged SVG instead of its “tiny” profile.

Browser Web fonts Web local
storage

CSS data
URI

Image sprites SVG
element

Android ≥ 2.2 ≥ 2.1 ≥ 1.5 ≥ 1.5 ≥ 3.0

Blackberry ≥ 6.0 ≥ 6.0 ≥ 6.0 ≥ 4.6 ≥ 6.0

Chrome ≥ 18.0 ≥ 18.0 ≥ 18.0 ≥ 18.0 ≥ 18.0

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://coding.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials
http://coding.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials
http://csssprites.org/
http://www.designdim.com/2011/02/8-best-css-sprites-generator-resources

Developing custom pictograms for the
mobile Web

11 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

Browser Web fonts Web local
storage

CSS data
URI

Image sprites SVG
element

IE Mobile ≥ 10.0 ≥ 9.0 ≥ 9.0 ≥ 9.0 ≥ 9.0

Meego ≥ 8.5 ≥ 8.5 ≥ 8.5 ≥ 8.5 ≥ 8.5

MIB ≤ 2.2.2 ≤ 2.2.2 ≤ 2.2.2 ≤ 2.2.2 ≤ 2.2.2

NetFront ≤ 4.2 ≤ 4.2 ≤ 4.2 ≤ 4.2 ≥ 3.33

Nokia S40 ≤ dp 2 ≥ dp 1.1 ≤ dp 2 = S40 6th = S40 6th 2

Obigo ≤ Q7.1 ≤ Q7.1 ≤ Q7.1 ≥ Q7.1 ≥ Q7.13

Opera Mini ≤ 7.1 ≤ 7.1 ≥ 4.0 ≥ 4.0 ≥ 4.0

Opera Mobile ≥ 10.0 ≥ 11.0 ≥ 10.0 ≥ 10.0 ≥ 10.0

Openwave ≤ 7.2 ≤ 7.2 ≤ 7.2 ≤ 7.2 ≥ 7.0

Safari ≥ 5.05 ≥ 5.05 ≥ 5.05 ≥ 5.05 ≥ 5.05

SEMC ≤ 4.0 ≤ 4.0 ≤ 4.0 ≤ 4.0 ≥ 4.03

Symbian ≤ 8.3 ≥ 8.3 ≥ 7.31 ≥ OSS3.0 ≤ 8.3

TSS ≤ 2.5 ≤ 2.5 ≤ 2.5 ≤ 2.5 ≤ 2.5

UC Browser ≤ 8.9 ≤ 8.9 ≤ 8.9 ≥ 7.94 ≤ 8.9

1. Works directly on block-level elements, not on pseudo-elements.

2. Only available on devices running Opera Mini.

3. SVG availability depends on model, implementation often severely limited.

4. Works in paragraphs, not within headings.

5. Older versions not tested.

8. RESOURCES ON THE INTERNET

Instead of firing up Gimp or FontForge to design custom pictograms, developers can
simply look to the wealth of (typo)graphical resources available on the Internet.

The sites http://www.alanwood.net/unicode/fontsbyrange.html and
http://www.babelstone.co.uk/unicode/fontlist.html are the first stops for determining
which typefaces implement a specific UNICODE block. Symbola
(http://users.teilar.gr/~g1951d) is essentially restricted to ASCII, Greek and Cyrillic,

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://users.teilar.gr/~g1951d
http://www.babelstone.co.uk/unicode/fontlist.html
http://www.alanwood.net/unicode/fontsbyrange.html

Developing custom pictograms for the
mobile Web

12 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

but encompasses many more pictograms – including non-standard ones. Quivira
(http://www.quivira-font.com/index.php) offers better support for European and Asian
scripts (e.g. Armenian, Georgian, Hebrew, Thai, Vietnamese), with a partial, but
growing, set of pictograms. Both free typefaces implement mathematical signs as
well as glyphs for musical notation and several ancient languages.

Relevant UNICODE block Quivira 3.8 Symbola 7.07 Remarks

Enclosed alphanumerics Circled digits

Geometric shapes Triangles for “up”, “next”…

Miscellaneous symbols Weather, games, zodiac…

Dingbats Assorted pictograms

Misc. symbols and arrows Orientated arrows

Enclosed alphanum. supplement Squared “free”, “new”…

Misc. symbols and pictographs Assorted pictograms

Emoticons Smileys

Transport and map Vehicles, tourist info…

Since their corresponding TrueType files weigh from 1.3 to 2.2 MB, these
typefaces are suitable solely as system fonts. One must recur to specialized font
packages, amounting to just a few KB to a few tens of KB, for binding downloadable
resources to mobile Web pages. Fortunately, there is an expanding supply of such
fonts, both free and commercial ones, professionally designed and covering
numerous symbols. Overlapping collections are presented at http://css-
tricks.com/flat-icons-icon-fonts, http://owltastic.com/2011/08/simple-interface-design-
icons, http://www.delicious.com/simurai/Icon-Fonts and http://www.iconsguide.com.

A plethora of icon sets, in bitmap or vector format, can be procured on the
Internet. The choice is facilitated to some extent by repositories offering a query
mechanism (by keyword, size, license, etc) such as http://www.icojoy.com and
http://findicons.com. The frequent round-ups at http://www.smashingmagazine.com
constitute a further source of information. We emphasize a couple of extreme cases:

 The set published by FatCow (http://www.fatcow.com/free-icons) comprises
some 3000 colourful icons originally intended for desktop applications.
Several of them are used in the compatibility tables of the present article.

 Pixelated (http://wplifeguard.com/pixelated-icon-set) and BacktoPixel
(http://www.icojoy.com/articles/28) feature icons with a minimalist design
and particularly small dimensions (10x10 and 9x9 pixels).

The sheer number of pictographic resources, the diversity of application
domains, and the variety of requirements make any attempt at a comparative
evaluation of available font and icon sets a daunting endeavour. We present here a

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://www.icojoy.com/articles/28
http://wplifeguard.com/pixelated-icon-set
http://www.fatcow.com/free-icons
http://www.smashingmagazine.com/
http://findicons.com/
http://www.icojoy.com/
http://www.iconsguide.com/
http://www.delicious.com/simurai/Icon-Fonts
http://owltastic.com/2011/08/simple-interface-design-icons
http://owltastic.com/2011/08/simple-interface-design-icons
http://css-tricks.com/flat-icons-icon-fonts
http://css-tricks.com/flat-icons-icon-fonts
http://www.quivira-font.com/index.php

Developing custom pictograms for the
mobile Web

13 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

small sample illustrating the stylistic range exhibited by current packages, based on a
handful of pictograms relevant for modern mobile Web applications:

 One pictogram present in every standard: the symbol for making a phone
call, generally used for click-to-call links.

 Two symbols absent from pictographic standards, indicating a hidden menu
(the “navicon” or approximations thereof), and an RSS feed.

 Two symbols available in some optional dictionaries: the cog traditionally
designating a “settings” menu, and a sign denoting photographic functions.

Package type phone menu feed config photo Attribution

Farm Fresh
Web

icon FatCow Web Hosting
http://www.fatcow.com/free-icons

Web0.2ama icon Christian Burprich
http://chrfb.deviantart.com

Frankfurt icon Patricia Clausnitzer
http://pc.de/icons

105 loops icon Pranav Pramod
http://dribbble.com/pranav

Iconic font,
icon

P. J. Onori
http://somerandomdude.com/wo
rk/iconic

Typicons font Stephen Hutchings
http://typicons.com

Entypo font Daniel Bruce
http://www.entypo.com

Font
Awesome

font Dave Gandy
http://fortawesome.github.com/Fo
nt-Awesome

There is a greater design and colour variability with icons, whereas fonts provide
flat, black and white glyphs, to be livened up with CSS.

The Web service at http://icomoon.io/app, running on HTML-5 capable browsers,
is invaluable to fine-tuning pictographic resources:

 Developers can mix and match symbols from various packages – including
one's own pictograms uploaded from SVG images or SVG font definitions –
and then generate both a set of image files and a Web font out of them.

 The Web font is produced in WOFF, TTF, SVG and EOT formats, with a
CSS boilerplate for @font-face declarations and related rules. It is very
compact, as it excludes superfluous glyphs. Characters are assigned to the
Basic Latin Block, the Private Use Area, or individual codes in UNICODE.

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://icomoon.io/app
http://fortawesome.github.com/Font-Awesome
http://fortawesome.github.com/Font-Awesome
http://www.entypo.com/
http://typicons.com/
http://somerandomdude.com/work/iconic
http://somerandomdude.com/work/iconic
http://dribbble.com/pranav
http://pc.de/icons
http://chrfb.deviantart.com/
http://www.fatcow.com/free-icons

Developing custom pictograms for the
mobile Web

14 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

 Image files are produced in SVG and PNG; corresponding sprites are also
generated, with a CSS file containing the necessary rules to use them.

One should of course study the relevant license for the permission to create and
use derivative works from a font or icon package processed through IcoMoon.

9. CONCLUDING REMARKS

Beyond issues of portability, each mode of implementing custom pictograms
produces subtly different representations.

The screen dump above, taken from an Opera Mobile 12.0 session with an
HTML-5 page exercising all main techniques on the 105loops set, highlights their
peculiarities regarding scale, alignment, and text formatting. In this test, Web fonts
are black by default, whereas bitmap resources have been painted in various
colours. Only those used in the “Web Local Storage” test are polychrome – but
images in “Sprites”, “Data URI” and “SVG image” could have been too.

Mobile Web sites are geared towards delivering synthetic information on displays
constrained in size, for immediate interactions in all situations of daily life.
Pictograms stand out from the surrounding text, and thus quickly draw attention

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

Developing custom pictograms for the
mobile Web

15 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

towards important content; they identify data elements, making it easier to skim a
page for an item of interest; they supplement styling attributes such as colour and
font when these become inapplicable (monochrome display, disabled CSS).

However, pictograms may impair accessibility when the client software can
neither handle them directly, nor map them to another appropriate representation
(such as a vocal enunciation of the associated concept). Thus, screen readers are
often confused by icon typefaces overriding the standard semantics of their
underlying code points – such as when letter O serves to depict a clock. Developers
can keep Web pages containing pictograms accessible in the following ways:

 Specify a meaningful alt attribute for pictograms implemented as external
images with , as well as for Openwave icons and WAP fall-backs.

 Assign pictograms implemented as characters to adequate code blocks in
UNICODE – such as “Miscellaneous symbols and pictographs” – or to the
Private Use Area, whose members are generally passed over by screen
readers but correctly displayed by normal browsers.

 When the pictogram is inserted in the HTML code, mark the enclosing
element as an item to be ignored by screen readers:



 Use an aural property to force screen readers to skip pictograms introduced
in CSS markup via the content directive:

[data-picto]:before {
 font-family: 'IconicFill';
 content: attr(data-picto);
 speak: none
}

Support for ISO pictographs is becoming common in newer smartphones, but
equivalent effects can be achieved on less well-endowed devices thanks to the
methods explained in this article. Hence, nothing more prevents developers from
taking advantage of pictograms to improve their mobile Web sites.

10. ACKNOWLEDGEMENTS

Many thanks to Sriram Sridharan from ScientiaMobile Inc. (www.scientiamobile.com)
for his help in testing Internet Explorer Mobile.

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://www.scientiamobile.com/

Developing custom pictograms for the
mobile Web

16 (16)

Eduardo CASAIS TECHNICAL PAPER 2013-02-11

REFERENCE

Eduardo Casais: Developing custom pictograms for the mobile Web, technical paper,
areppim AG, Bern, Switzerland, 2013-02-11, 15 pages.

A version of this article has been published by mobiForge at

http://mobiforge.com/designing/story/developing-custom-pictograms-mobile-web

This paper can be downloaded in PDF format from areppim.com at

http://areppim.com/b2evolution/usrblogs/technotes/?p=39

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland. All rights reserved.

ABOUT THE AUTHOR

Eduardo Casais has been working on mobile Web technologies since 1997. He led
the development of content adaptation facilities in the Nokia WAP Gateway. He was
also involved in projects dealing with transcoders for WWW on TV set-top-boxes.
Eduardo Casais has been an invited expert to the Mobile Web Best Practices
Working Group of the World-Wide-Web Consortium, where he participated in the
elaboration of the Content Transformation Guidelines.

ABOUT AREPPIM AG

areppim AG develops Internet applications, with an emphasis on the display of
quantitative information. The site http://www.areppim.com publishes data on a wide
range of topics, presented as intuitive, content-rich charts and often accompanied by
concise analyses. Naturally, data can also be accessed with mobile phones at
http://mobile.areppim.com through a no-frills, mobile-optimized interface.

ADDRESS

areppim AG
Wankdorffeldstrasse 102
P.O. Box 261
CH-3000 Bern 22
Switzerland

e-mail: info@areppim.com

© 2013 Eduardo Casais, areppim AG, Bern, Switzerland

http://mobiforge.com/designing/story/developing-custom-pictograms-mobile-web
mailto:info@areppim.com
http://mobile.areppim.com/
http://www.areppim.com/
http://areppim.com/b2evolution/usrblogs/technotes/?p=39

	1. A matter of trade-offs
	2. System Fonts
	3. WEB fonts
	4. Images Stored Locally
	5. Background CSS Images
	6. Sprites
	7. Minimal Fall-Back
	8. Resources On The Internet
	9. Concluding Remarks
	10. Acknowledgements
	reference
	about the author
	About areppim AG
	Address

